Introduces the student to the basic concepts and principles of meteorology via the interpretation of weather maps and charts; uses current weather information to illustrate key concepts, emphasizes the physical atmospheric processes responsible for weather. By the end of the class students will be able to interpret and make basic weather forecasts as well as be able to explain basic atmospheric phenomena. Same as GGIS 100.
Most extreme manifestations of weather and climate are analyzed in terms of their physical basis and their historical, economic and human consequences. Emphasis is placed on the interplay between technological advances, the evolution of meteorology as a science, and the impacts of extreme weather (winter storms, floods, severe thunderstorms, hurricanes, El Nino). Technological advances include satellites, weather radars and profilers, and computer models used for weather prediction. Same as ESE 120.
Introduces climate change and its interactions with the global environment; surveys the physical, chemical, biological and social factors contributing to global change; includes topics such as greenhouse warming, acid rain, ozone depletion, distinguishes anthropogenic influences and natural variability of the earth system; addresses societal impacts, mitigation strategies, policy options and other human responses to global change. Same as ESE 140.
Introduction to physical processes in the atmosphere, focusing on those relevant to weather and storms. Emphasizes quantitative problem solving. Topics include atmospheric structure, atmospheric thermodynamics, clouds, synoptic meteorology, weather forecasting, and storms. For students in atmospheric sciences, physics, mathematics, engineering, and other physical and natural sciences.
Study of the physical process that govern Earth's climate. Students will learn basic principles of large-scale circulations, radiation and energy balances and the role of greenhouse gases, paleoclimate, how climate is changing in the present day, and how climate is projected to change in the future. Societal impacts of climate change and climate change policy are also addressed. Students gain hands-on experience by performing data analysis on historical and projected climate data. Prerequisite: MATH 220 or MATH 221.
Introduces python programming fundamentals as applied to real-world problems in the atmospheric sciences. Students will develop an understanding of the structure and use of weather and climate datasets; use computers for data representation, presentation, and visualization; and implement introductory methods for weather and climate data reduction and statistical analysis. Prerequisite: Prior enrollment in STAT 107 is recommended but not required.
Introduction to the laws governing the propagation of electromagnetic radiation in the Earth's atmosphere. Topics include absorption, emission, and scattering of radiation, absorption and scattering properties of atmospheric constituents, the Sun as a source of radiation, the radiative transfer equation, and simple radiative balance models. Emphasis will be placed on the role of radiation in weather and climate, the description of atmospheric optical phenomena, and the application to remote sensing. Prerequisite: MATH 241 and PHYS 212.
Develops an understanding of microphysical processes occurring within clouds through use of in-situ observations, modeling, and theoretical studies; topics covered include nucleation, diffusional growth of water and ice particles, the warm rain process, the cold rain process (including riming, aggregation, graupel and hail), weather modification, and an introduction to radar meteorology. Prerequisite: ATMS 301, or consent of instructor.
Introduces students to Earth's climates and the processes that determine them. Examines factors that control natural climate change over long and short time scales, processes by which humans impact climate and climate change, methods to predict climate change, and climate change response by policymakers. Prerequisite: ATMS 201.
Examines the tools and techniques of weather forecasting, with heavy emphasis on actual forecasting. Numerical models used to forecast weather are reviewed and compared. Forecasting using numerical, statistical and probabilistic forecasting techniques is studied. Forecasts of significant winter weather, convection, floods and other weather hazards are emphasized. Students learn the process behind Severe Weather Watches and Warnings, Quantitative Precipitation Forecasts, precipitation type forecasts, flood forecasts and forecasts of other significant weather. Prerequisite: ATMS 303 or consent of instructor.
Examination of the structure and dynamics of weather systems that occur on the mesoscale. The course first reviews what is meant by "mesoscale". Examines the structure and dynamics of both free and forced mesoscale circulations. Free circulations are those internal to the atmosphere, such as thunderstorms, mesoscale convective systems, squall lines, hurricanes, jet streaks, and fronts. Forced circulations are those tied to features external to the atmosphere, such as shorelines (the sea breeze), lakes (lake effect storms), and mountains. Prerequisite: ATMS 301, ATMS 302, ATMS 303, or consent of instructor.
A survey of the meteorological instrumentation used to document and investigate weather and climate. Students will gain hands-on experience with a variety of instrumentation integrated with the data analysis techniques and scientific communication formats used professionally within the field of atmospheric sciences. The focus is to explore modern methods of weather observation used in research, governmental, and industrial settings while training each student to gather, assess, interpret and communicate weather data. Students will gain hands-on experience with a variety of instrumentation integrated with data analysis techniques and intensive scientific writing exercises. Each writing exercise has been designed to teach the variety of writing techniques employed in Atmospheric Sciences. Prerequisite: ATMS 201. Concurrent enrollment in ATMS 305 is encouraged. Restricted to Atmospheric Sciences Majors. Additional seats may be available for Atmospheric Sciences Minors.
With the ongoing climate change, students, the public, and the private sector have developed a keen interest in the intersection of meteorology, climate science, and service-oriented applications. This course will introduce the science and technology foundation that contributes the real-world decision-making, and delve into the diverse arenas where weather and climate information play a pivotal role, including agriculture, (renewable) energy, transportation, disaster responses, and public health. 3 undergraduate hours. 4 graduate hours. Prerequisite: ATMS 301, ATMS 302, and ATMS 305 for undergraduate students; or Graduate standing.
Biochemical cycles of atmospheric trace gases, their interactions on global and regional scales, and their significance for the chemistry in the atmosphere. Important fundamental concepts central to understanding air pollutants, e.g., the formation of aerosols and the transformation and removal of species in the atmosphere. Same as CEE 447. 4 undergraduate hours. 4 graduate hours. Prerequisite: CHEM 102, PHYS 211, and MATH 241.
Success as a scholar requires mastering important capabilities, beyond those of a chosen discipline, that typically are learned throughout one’s career. This course delivers such capabilities up front, thereby empowering undergraduate students, graduate students, and postdoctoral researchers across all disciplines to pursue activities far earlier than normally would be the case. Topics include types of research and creative activity, funding sources, research methods, grant proposals, communicating outcomes, ethical conduct, intellectual property, compliance, multidisciplinary inquiry, policy, and collaboration. 3 undergraduate hours. 4 graduate hours. Prerequisite: Restricted to upper division undergraduates and graduate students unless permission is granted by the instructor.
Individual study or reading at an advanced undergraduate level in a subject not covered in normal course offerings or undergraduate research performed under faculty supervision. 1 to 4 undergraduate hours. No graduate credit. May be repeated to a maximum of 8 hours. Prerequisite: Consent of advisor and faculty member supervising work.
Special topics in atmospheric sciences. See Class Schedule for topics and prerequisites. 2 to 4 undergraduate hours. 2 to 4 graduate hours. May be repeated in the same or separate terms as topic varies to a maximum of 12 hours.
All senior Atmospheric Sciences undergraduate majors have the opportunity to take a Capstone Undergraduate Research experience. Students will be engaged in an atmospheric science research project with an ATMS faculty supervisor. 4 undergraduate hours. No graduate credit. May be repeated to a maximum of 8 undergraduate hours. Prerequisite: Restricted to students with senior standing in Atmospheric Sciences, or permission of ATMS faculty supervisor.
Addresses numerical techniques for solving linear and nonlinear differential equations in initial value fluid flow problems. Students receive a thorough background in the principles used to evaluate numerical methods, the ability to critically interpret these methods as presented in the literature, and in particular, the practical application of these techniques in modeling multi-dimensional flow on high-performance computers. Temporal and directional splitting, finite differencing/volume methods, and adaptive nesting will be discussed. Same as CSE 566. Prerequisite: MATH 285 or equivalent. Graduate Standing or Consent of Instructor.
Examination of the structure and dynamics of mid-latitude weather systems, integrating weather observations, with the current state of dynamic theory, numerical weather prediction models, and the physical principles of atmospheric thermodynamics, cloud and precipitation physics, and radiation to the problems of weather analysis and forecasting. Students will be required to give weather forecast briefings to develop an understanding of the weather forecasting process, and gain experience in communicating weather forecasts. Prerequisite: Graduate standing or consent of instructor.
Investigates the dynamical and physical processes that govern Earth's paleo, current, and future climates. Emphasizes principles of climate change, natural and anthropogenic, and regional, national, and global. Global climate models and their predictions are examined in the context of scenarios for future population growth and energy consumption. Prerequisite: Graduate standing or consent of instructor.
An examination of the role of clouds in the climate system, including aerosols and aerosol cloud interactions, direct, semi-direct and indirect aerosol effects, in-situ measurements of clouds, properties of liquid and ice clouds, precipitation mechanisms and representation in models, scattering by cloud particles and model representations, remote sensing of cloud properties, and representation of clouds in climate models. Prerequisite: Restricted to Graduate standing or consent of instructor.
Many petabytes of geosciences data have been observed and curated by NASA and NOAA in anticipation of new data science tools designed to yield insights and improve forecasts of Earth processes. Students will learn the fundamentals of data science using publicly available datasets toward the end of conducting novel research in the geosciences. Topics include data ethics, uncertainty, data curation and management, version control, cluster and cloud computing, introductory Unix and Python, and visualization. Same as GEOL 517. Prerequisite: Restricted to graduate standing or consent of instructor.
A graduate-level treatment of the analysis and prediction of the Earth's climate over subseasonal, seasonal, and decadal time scales. Following the preliminaries on how these scales are realized in climate observations, we will describe the drivers of the climate system across these scales. Modes of natural climate variability, which include El Nino/Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Madden-Julian Oscillation (MJO), will then be described, as will the statistical techniques used to reveal them. Statistical prediction models based on multivariate regressions often incorporate index-representations of ENSO and other relevant variables. Accordingly, we will devote some time and exercises on methods in which these models are developed as well as tested. Dynamical models are also used for climate prediction, but require computational capability and relatively more thought in design and application. Thus, we will complete the course with a significant treatment of global models as well as regional models. Both models are based on the same basic set of equations, but typically have different applications. Model setup and implementation will be illustrated through practical exercises with open-source community global and regional models. Prerequisite: ATMS 517 and ATMS 520, or equivalent; or Permission of Instructor.
Introduces concepts and methods in quantitative risk analysis in the Earth, atmospheric, and environmental sciences. Key concepts will include probability, impacts, risk, uncertainty, statistical estimation, and decision making. Students will use simple risk analysis methods to apply these concepts to example problems related to drought, flooding, weather extremes, and anthropogenic climate change. The students will learn the R programming language for statistical computing, which will be used to integrate concepts and methods using observational data and model output, and we will focus on real-world multi-disciplinary applications. Prerequisite: Restricted to graduate students or consent of instructor.
Individual study or reading in a subject not covered in normal course offerings. May be repeated to a maximum of 8 hours. Prerequisite: Consent of instructor.
Seminar on topics of current interest. Approved for S/U grading only. Prerequisite: Consent of instructor.
Non-thesis research in the Atmospheric Sciences. Approved for S/U grading only. May be repeated to a maximum of 8 hours. No more than 8 hours may be counted towards a master's degree in ATMS. Prerequisite: Restricted to students in the non-thesis options, which includes the online master's degree.
Check with the department to identify which CRN is needed for your advisor and any related registration questions. Approved for S/U grading only. Prerequisite: Consent of instructor.